
Deliverable 5.1 OpenFlow in Europe ï Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 1 of (63)

OFELIA

ICT-258365

Deliverable 5.1

1
st
 Version of the OFELIA Management Software

Editor: Marc Suñé (Fundació Privada i2cat, Internet i Innovació Digital a

Catalunya(i2cat))

Work Package (leader) WP5 (Marc Suñé, Fundació Privada i2CAT, Internet i Innovació Digital a

Catalunya (i2CAT))

Deliverable nature: Prototype (P)

Dissemination level:
(Confidentiality)

Public (PU)

Contractual delivery date: 28/02/11

Actual delivery date: 07/03/11

Suggested readers: t.b.d.

Version: 1.0

Total number of pages: 63

Keywords: OFELIA-FP7 WP5 D5.1

OFELIA ï OpenFlow in Europe ï Linking Infrastructure and Applications Deliverable 5.1

Page 2 of (63) © OFELIA consortium 2010-2013

Disclaimer

This document contains material, which is the copyright of certain OFELIA consortium parties, and may not

be reproduced or copied without permission.

In case of Public (PU):

All OFELIA consortium parties have agreed to full publication of this document.

In case of Restricted to Programme (PP):

All OFELIA consortium parties have agreed to make this document available on request to other framework

programme participants.

In case of Restricted to Group (RE):

All OFELIA consortium parties have agreed to full publication of this document. However this document is

written for being used by <organisation / other project / company etc.> as <a contribution to standardisation /

material for consideration in product development etc.>.

In case of Consortium confidential (CO):

The information contained in this document is the proprietary confidential information of the OFELIA

consortium and may not be disclosed except in accordance with the consortium agreement.

The commercial use of any information contained in this document may require a license from the proprietor

of that information.

Neither the OFELIA consortium as a whole, nor a certain party of the OFELIA consortium warrant that the

information contained in this document is capable of use, nor that use of the information is free from risk,

and accepts no liability for loss or damage suffered by any person using this information.

Imprint

[Project title] OpenFlow in Europe ï Linking Infrastructure and Applications

[short title] OFELIA

[Number and title of work package] WP5 ï Software Development

[Document title] D5.1

[Editor] Marc Suñé, Fundació i2CAT

[Work package leader] Marc Suñé, Fundació i2CAT

[Task leader] Marc Suñé, Fundació i2CAT

[PM (estimated)] 30

[PM (consumed)] Number

Copyright notice

© 2010-2013 Participants in project OFELIA

Optionally list of organizations jointly holding the Copyright on this document

Deliverable 5.1 OpenFlow in Europe ï Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 3 of (63)

Executive summary

The main goal of the OFELIA WP5 is to provide the required software to support the operation of

the facility. Based on the different requirements for design, management and implementation ,

several different technologies, tools and existing testbed control frameworks have been studied.

This document provides a description of the work that has been carried out during the first period of

the task T.5.2, which concludes with the release of the first version of the OFELIA Control

framework.

This document provides a brief overview of the state-of-the-art study that was done in task T5.1,

(see document MS 5.1 [21] for details), which evaluated and tested several existing control

frameworks and technologies that could potentially simplify and improve the process of OFELIA 's

control framework development. Based on the conclusions drawn in [21] , OFELIA will adopt the

Stanford's control framework tool (called Expedient and Optin Manager) as the base

implementation code, and which its functionality has been shown in various US OpenFlow GENI

testbed demonstrations beds various GENI demonstrations [22][23].

Furthermore, this document provides an overview of the principles and basic objectives that were

pursued during this first phase of the development, as well as a description of what has been defined

as the basic use case for phase 1. In this ñbasic use caseò document, the basic interaction of the user

with the OFELIA facility is synthesized. This enables extracting the basic requirements of the

software, which will evolve as the facility receives new users and projects.

The remainder of this document focuses on a brief overview of the Stanford's control framework

(i.e. Expedient and Opt-in Manager tool) including a brief introduction to its architectural design

and coding structure.

Section 3 offers a detailed description of the work that has been carried out in WP5 during T5.2

including a description of the scope of each of the subtasks, the challenges that are being faced,

tools and technologies used, as well as architecture and coding strategy of the proposed solution. In

addition Section 4 exposes the current status of each of these subtasks as well as a brief description

of the next steps for the following months

Finally, as part of the deliverable, a set of guidelines and comments on the software bundle that can

be found and downloaded for evaluation in the OFELIA FP7 repositories is given in section 5.

OFELIA ï OpenFlow in Europe ï Linking Infrastructure and Applications Deliverable 5.1

Page 4 of (63) © OFELIA consortium 2010-2013

List of authors

Organisation/Company Author

NEC Thomas Dietz

UESSEX Jayakumar Ramanujam

UESSEX Siamak Azodolmolky

UESSEX Reza Nejabati

UESSEX Dimitra Simeonidou

ADVA Pawel Kaczmarek

ADVA Pawel Kostecki

ETHZ Jose Francisco Mingorance- Puga

ETHZ Wolfgang Mühlbauer

EICT Andreas Köpsel

EICT Tom Rothe

IBBT Didier Colle

i2CAT Leonardo Bergesio

i2CAT Marc Suñé

i2CAT Alejandro Chuang

Deliverable 5.1 OpenFlow in Europe ï Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 5 of (63)

Table of Contents
1 Introduction .. 9

1.1 OFELIA Control framework overview .. 9
1.1.1 The objective and development principles .. 9
1.1.2 MS5.1 Initial study of the state-of-the-art. Starting point. .. 10

1.2 Basic use-case .. 11
1.2.1 Description of the basic scenario for the use case ... 11
1.2.2 Description of the basic use case. ... 12

1.3 General overview of the current results achieved. ... 13
2 Base software ... 14

2.1 Expedient tool .. 14
2.1.1 Code analysis .. 16

2.2 Opt-in Manager .. 17
2.2.1 Code analysis .. 19
2.2.2 Adaptation and expansion of Opt-in Manager .. 20

3 Phase 1 development: OFELIA Control Framework ... 21
3.1 Overview of the development phase1 .. 21

3.1.1 Development environment and SDK .. 21
3.2 Modified architecture ... 25
3.3 Adaptation, expansion and debugging. Sub-task descriptions. .. 26

3.3.1 LDAP integration subtask ... 26
3.3.2 Server virtualization software subtask .. 29
3.3.3 Adding support for ProtoGENI-enabled equipment subtask .. 37
3.3.4 Adapting optical equipment to OpenFlow .. 38
3.3.4.1 Related backgrounds .. 38
3.3.4.2 Packet to circuit mapping... 41
3.3.4.3 Interlayer Open Flow operations ... 41
3.3.4.4 Layer1 / Layer 0 slice concept ... 42
3.3.4.5 High level design ... 43
3.3.4.6 OpenFlow Optical Components:.. 44
3.3.4.6.1 Virtual switch boundaries .. 45
3.3.4.6.2 DCN configuration .. 46
3.3.4.6.3 OpenFlow agent ... 46
3.3.4.6.4 Virtual switch model .. 47
3.3.4.6.5 GMPLS Co-operation .. 48
3.3.4.6.6 Provisioning of transponders ... 49
3.3.4.7 Design features and considerations .. 49
3.3.5 Resource listing plug-in subtask ... 50
3.3.6 Opt-in manager improvements and bug fixing subtask .. 50
3.3.7 Integration tests, debugging and Expedient's GUI improvements subtask 52

4 Current state of the implementation ... 54
4.1 LDAP integration subtask status .. 54
4.2 Server Virtualization software subtask status .. 54
4.3 Adding support for ProtoGENI-enabled equipment subtask ... 55
4.4 ADVA's optical equipment adaptation to Openflow subtask ... 56
4.5 Resource listing plug-in subtask .. 56
4.6 Opt-in Manager improvements and bug fixing subtask ... 56
4.7 Integration tests, debugging and Expedient's GUI improvement subtask .. 56

5 Description of the software deliverable .. 58
6 References .. 59
Appendix A: Basic use-case document ... 60

OFELIA ï OpenFlow in Europe ï Linking Infrastructure and Applications Deliverable 5.1

Page 6 of (63) © OFELIA consortium 2010-2013

List of figures and/or list of tables

Figure 1: Isolated island basic scenario ... 12
Figure 2: Expedient tool architecture. ... 15
Figure 3: Expedient code structure. ... 16
Figure 4: Basic Opt-in Manager architecture connected to FlowVisor and Controller 18
Figure 5: GIT branching schema ... 23
Figure 6: Code directory structure (expedient.stable branch) ... 25
Figure 7: Expedient architecture with the additions. ... 26
Figure 8: Authentication architecture .. 27
Figure 9: Replication of LDAP server ... 28
Figure 10: General Architecture considering the plug-in-AM-Agent triplet ... 30
Figure 11: VT AM block diagram ... 31
Figure 12: Server Agent block diagram .. 32
Figure 13: Communication model between the three modules ... 36
Figure 14: Position of ProtoGENI plug-in in the Expedient control framework ... 37
Figure 15: OpenFlow unified architecture ... 38
Figure 16: OpenFlow switch flow table entry ... 39
Figure 17: Circuit-based flow table entry .. 39
Figure 18: Flow table structure .. 39
Figure 19: OpenFlow virtualization in Circuit and Packet switching networks .. 40
Figure 20: Multi layer L2-L1/0-L2 islands .. 42
Figure 21: Enabling ADVA ROADMs with OpenFlow ... 43
Figure 22: Cross-connect setup in a virtual switch .. 44
Figure 23: External transponder connected to an EROADM and to a CCM module 46
Figure 24: Extended port addressing ï example ... 46
Figure 25: Propagation of topology changes ... 52

Deliverable 5.1 OpenFlow in Europe ï Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 7 of (63)

Abbreviations

AA Authentication and Authorization

AID Access Identifier

AM Aggregate Manager

API Application Programming Interface

CLI Command Line Interface

CM Component Manager

CPU Central Processing Unit

DHCP Dynamic Host Configuration Protocol

DN Distinguished Name

DWDM Dense Wavelength Division Multiplexing

E-GENI Enterprise GENI

FIRE Future Internet Research and Experimentation

GCF GENI Control Framework

GMPLS Generalized Multi-Protocol Label Switching

GPL General Public License

GUI Graphical User Interface

HTTP HyperText Transfer Protocol

IM Island Manager

IP Internet Protocol

LDAP Lightweight Directory Access Protocol

LVM Logical Volume Management

MAC Media Access Control

NOC Network Operations Center

OAM Oracle Applications Manager

OF OpenFlow

OF OpenFlow

OFELIA OpenFlow in Europe ï Linking Infrastructure and Applications

OS Operating System

OSC Optical Supervisory Channel

OSPF-TE Open Shortest Path First-Traffic Enginyeering

ROADM Reconfigurable Optical Add-Drop Multiplexer

ROADM Reconfigurable Optical Add Drop Multiplexer

RPC Remote Procedure Call

RSpec Resource Specification

SDH Synchronous Digital Hierarchy

SDK Software Development Kit

SFA Slice-based Federation Architecture

SNAC Simple Network Access Controller

SONET Synchronous Optical Network

SSH Secure Shell

STS Synchronous Transport Signal

TCP Transmission Control Protocol

TDM Time Division Multiplexing

UI User Interface

UID User Identifier

URL Universal Resource Locator

UUID Universally Unique Identifier

VCG Virtual Concatenation Groups

OFELIA ï OpenFlow in Europe ï Linking Infrastructure and Applications Deliverable 5.1

Page 8 of (63) © OFELIA consortium 2010-2013

VCG Virtual Concatenation Group

VLAN Virtual Local Area Network

VM Virtual Machine

VPN Virtual Private Network

VT AM Virtualization Technology Aggregate Manager

WP Work Package

XML Extensible Markup Language

Deliverable 5.1 OpenFlow in Europe ï Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 9 of (63)

1 Introduction

The objective of this deliverable ñD5.1 - 1
st
 version of the OFELIA management softwareò and in

particular of the Task 5.2 within WP5 work package, is to provide an implementation of the facility

control framework, to try to automate as much as possible the operation and maintenance of

Openflow [1] islands.

1.1 OFELIA Control framework overview

1.1.1 The objective and development principles

The OFELIA Control Framework can be defined as the control plane application for OFELIA -FP7

facility. The main purpose of the framework is to automate, simplify and authorize users to create

network slices and deploy resources available within OFELIA islands for various types of

experimental projects.

Task 5.2 is dedicated towards design and implementation of the OFELIA control framework and is

split logically into three distinct phases:

1. Phase I will have the commitment to code the first early version of the control framework,

which will be focused on the management of the island's local resources. No inter-island

resource control will be available in Phase I. However, and having in mind that Phase II will

require the integration of the different islands, special attention will be paid to make the

right design decisions to prevent conflicts, errors and re-engineering efforts in Phase II and

Phase III.

2. Phase II , will be devoted to empower the control framework with mechanisms to allocate

resources across multiple islands within the same project and slice. In addition, this phase

will also include software improvements of some of the basic features implemented in Phase

I, taking into account experiences acquired from the different internal and external facility

users.

3. Finally, Phase III will continue the overall improvement of the control framework,

especially taking into account the requirements, suggestions and comments inferred from

users of the first open call.

From the above description one can see that the development of the control framework will be

highly dependent of the user requirements, and hence it will continuosly adapted according to new

requests and suggestions proposed by the facility users. In this sense, although at least one release

of the software will be published per phase, T5.2 will try to follow a dynamic and on demand Agile

software development approach, constantly evolving and improving the software.

From the point of view of the first phase, which will be the scope of this deliverable, Task 5.2 has

taken into account the document MS2.1 ñReport on initial requirement study and analysis of use-

cases ready" (See [20]) that has been delivered from WP2, and fundamentally the ñBasic Use

Caseò document as a result of the collaboration of WP2 and WP5, as well as some generic

requirements that were deduced from the experiences on Openflow testbeds in USA (basically in

the GENI project). An analysis of the so far collected requirements resulted in a set of design

principles that define the basic requirements for the control framework, facility and the underlying

physical network substrate.

OFELIA ï OpenFlow in Europe ï Linking Infrastructure and Applications Deliverable 5.1

Page 10 of (63) © OFELIA consortium 2010-2013

The following principles have guided the development work for the OFELIA control framework:

¶ Resource allocation: the user should be able to allocate or book resources in an easy way.

Within the OFELIA testbed the different basic types of resources will be; OpenFlow

resources (such as openflow enabled switches, switch ports, traffic flows) , hosts: (either

virtual or physical), in-cluster VMs (in the case of the IBBT virtual-wall), IBBT's WLAN

testbed or any other resource that partners want to include in the OFELIA facility.

¶ Experiment and project based resource allocation: the resource allocation must be made

per project and slice. A slice is defined as the smallest indivisible entity that is composed by

the resources necessary to carry out an experiment. A project may be composed by one or

more slices.

In this sense, and tightly related to the following requirement, the control framework has also the

objective to isolate as much as possible each and every single slice from each other sharing the

same infrastructure substrate. In the particular case of OFELIA, special attention needs to be paid to

network traffic segregation between slices.

¶ AA: the control framework has to support user authentication and authorization mechanism.

Users should have different levels of permissions based on their status, having at least one

superuser or ñroot userò per island.

¶ Usability: users, in this case, experimenters should have access to a comprehensive and

easy to use interface. In this sense, the preferred way of interacting with the users is a web-

based interface. Special attention will be paid to try to bring to the user, as much as possible,

a unified interface for managing everything related to the OFELIA facility.

¶ Scalability: the control framework must be scalable, in terms of number of users, number

of supporting concurrent experiments and number of managed resources.

¶ Island autonomy: one of the basic requirements that the control framework will have to

deal with that some partners have expressed, is that the control framework should be able to

manage resources locally (in the island) even if connection with the rest of the islands is

lost. Therefore effectively being completely autonomous.

¶ Robustness and stability. Stability and robustness is a must.

¶ Monitoring: the control framework should perform monitoring tasks, for both the

components conforming the control framework, and the resources of the testbed.

¶ Efficiency. The development will try to be as efficient as possible in terms of coding and

trying to reuse as much as possible the different open-source tools and libraries that the

community offers , to focus their efforts on the development of those aspects that are

particular for OFELIA control framework and also to improve those open-source libraries

and tools.

1.1.2 MS5.1 Initial study of the state-of-the-art. Starting point.

During task T5.1 an in-depth study of the state of the art of several control frameworks,

technologies and tools for managing testbed resources was conducted. The milestone document

MS5.1 ñSoftware development environment setupò [21] contains all this information, and also an

analysis of each of these tools to be used in the specific case of OFELIA facility. In order to

Deliverable 5.1 OpenFlow in Europe ï Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 11 of (63)

improve implementation efficiency, and taking into account the tight time schedule for delivery of

the Phase I software package, it was decided to adopt an existing control framework rather than

implementing a new one. For improved stability and robustness existing mature (open source)

software components should be used whenever possible resulting in a configuration above

implementation approach or DRY concept (donôt repeat yourself).

The conclusions drawn by MS5.1 can be basically summarized in the following statements:

¶ The E-GENI Expedient [2] tool, in conjunction with the rest of software (plug-ins, aggregate

managers, etc) will be used as basis for the OFELIA control framework implementation.

¶ During Phase I of the project each island will work isolated from each other. Every island

will have one instance of Expedient plus at least two aggregate managers: Opt-in Manager

[3] for the OpenFlow resources, and the virtualization technology aggregate (which will be

XEN for the Phase I [4]).

¶ The architecture that the OFELIA control framework will follow as much as possible will be

inspired by the Slice-based Federation Architecture, SFA [5].

¶ The OpenFlow development effort regarding Expedient, the Opt-in Manager and FlowVisor

will be conducted in collaboration with Stanford University.

¶ The code repository will be GIT and will be structured in specific branches.

¶ The basic programming language will be Python. The Python based Django web

development framework is going to be used for the user web interfaces developments since

it is the one in use in the current software. However, it will be up to the consortium to use

other programming languages and technologies for new developments and the modifications

carried out over the current implementation.

It is also remarkable that OFELIAWP5 has been in direct contact with the developers at Stanford, in

order to coordinate development efforts towards a unified and improved control framework.

1.2 Basic use-case

During this period of time, and besides the document MS2.1, both WP2 and 5 have joined efforts to

define an internal document to summarize the basic use-case that the OFELIAfacility is going to

support on the preliminary phase. In other words, the basic use case defines the basic functional

tests to verify proper operation of the OFELIA control framework, its OAM mechanisms, and the

interface towards the user.

1.2.1 Description of the basic scenario for the use case

The following diagram shows what has been considered as the basic scenario for phase1. In this diagram the

basic components from which all OFELIA islands should be composed are:

¶ OpenFlow enabled network substrate. An OpenFlow capable network must interconnect the different

data plane elements inside the island (hosts, FlowVisor, etc and other control framework elements).

¶ Hosts. A set of hosts are supposed to interact among others. These hosts will have basically two

roles:

 Act as end-points, and hence sending and receiving traffic inside the slice. This will

basically be done by using VMs inside one or more virtualized island servers. The impact

of using virtualized entities as data sinks and sources in performance tests is for further study.

OFELIA ï OpenFlow in Europe ï Linking Infrastructure and Applications Deliverable 5.1

Page 12 of (63) © OFELIA consortium 2010-2013

 Run the controller software. As the core functionality of OpenFlow is the split of data and

control plane, experimenters will deploy own controller entities hosting a variety of network

applications. The deployment of controller entities and how these entities interact cannot be

foreseen by OFELIA. However, at least one controller per slice (could be more, depending of the

configuration of the slice) is the minimum requirement. Further extensions may be necessary to

this initial assumption in the next phases.

¶ FlowVisor. Each island will have at least one FlowVisor entity to which users will connect their

controllers (e.g. NOX controller). As FlowVisor provides the core slicing functionality for isolating

slices and experiments, FlowVisor access and the ability control the FlowVisor must be restricted to

OFELIAôs control framework. In this sense, the control framework must ensure proper configuration

of FlowVisor, and hence enforce the isolation between isolation, and prevent misbehavior by the

user, by means of an authorization and authentication module.

¶ Control network. The control network will be used by the different entities of the control

framework and facility service hosts to exchange data in a secure way. In principle, there

should be no restriction on having the control network and data network in the same logical

network. However and for security reasons an out-of-band control network is preferred.

Please note, that specific requirements may be defined by the individual islands based on their local

deployments, e.g. L2 vs. L3 based core, availability of (dark) fibers when multiple sub-islands are

going to be connected, requirements defined by existing test beds (optical devices in Essex, wireless

devices in Berlin, etc.). The OFELIA control framework is designed and configured to be useful for

many heterogeneous environments and to reflect future constraints defined by new islands.

Figure 1: Isolated island basic scenario

1.2.2 Description of the basic use case.

The document of the basic use case can be found in Appendix A.

Please note that the slicing mechanism adopted by OFELIA is still under discussion at the time of

writing this document. Several proposals have been made including MAC address based slicing,

VLAN based slicing, IP based slicing.

Deliverable 5.1 OpenFlow in Europe ï Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 13 of (63)

1.3 General overview of the current results achieved.

The current status of the code can be browsed in the GIT repository of the project (See section

3.1.1.1) under the "ofelia-stable" branch. To summarize, the current implementation includes the

basic functionality expected for phase I, namely: provisioning of XEN server resources (VMs)

through the Expedient web interface, integration of LDAP and the automation of flow allocation

(that is in process of being implemented). The software has been tested and is still under testing by

some partners, specifically the GUI, and also other GUI interface aspects have been modified and

customized.

It is important to remark that the adoption of Expedient and Opt-in manager as a basis for the

implementation of the OFELIA Control Framework has obviously some advantages. These

advantages are basically that a part of the features that were planned to be developed for the

OFELIA tool, have been already coded, and also the fact that the collaboration between both

OFELIA and Stanford University is beneficial for the open-source community and especially to

other projects that might require testbed management solutions.

However, adopting an existing framework may also result in a number of less beneficial issues: . A

significant learning curve is related to the existing code base and the technologies used.

Furthermore, the fact of being a solution for another test bed (although its purpose might have

some similarities with OFELIA), does not fit perfectly on the particular requirements defined within

OFELIA. Therefore enhancements, modifications and extensions have to be implemented.

In addition, the Expedient used as a basis for the implementation work in OFELIA, has never been

used in a production environment, and has only been tested in some demonstrations and low-scale

user testing, hence can be categorized as a pre-production application. As the expedient code is still

alpha quality software, significant efforts must be invested for testing the framework, fixing

potential bugs and stabilizing its features. From that perspective expedient generates a similar work

load compared to a self-development.

A detailed description of the current status of the development can be found in section 4.

OFELIA ï OpenFlow in Europe ï Linking Infrastructure and Applications Deliverable 5.1

Page 14 of (63) © OFELIA consortium 2010-2013

2 Base software

2.1 Expedient tool

Expedient is a pluggable centralized GENI control framework. It is inspired by travel websites that

allow a user to book a flight, hotels, and rental cars all within the same system. It is implemented as

a Web application using Python and the Django Web framework. It provides simple abstract classes

that resource developers can extend to build a plug-in for their resource types. It provides project,

slice, and user management so that they do not have to worry about it.

Expedient tool is still a proof-of-concept that yet has not been used in real production context. It is

released under an Open Source License and less restrictive than GPL.

Expedient tool tries to implement all the requirements for a GENI control framework. Its design is

based on the following core functionalities:

¶ Simplicity and Extensibility . It has been designed with the purpose of being improved by

the addition of new plug-ins capable of handling different kind of resources. In this sense it

is positive that each plug-in is independent inside Expedient and different plug-ins for

different resources can be developed separately.

¶ User convinience. Expedient enables rich user interfaces with its pluggable architecture. It

allows developers to write user interface plug-ins that are tailored to sets of resource types at

a time.

¶ Security and Reliability. Users authenticate themselves with Expedient and Expedient acts

as a gateway for all their transactions with resources. If a resource provider does not want to

implement authentication and authorization for each user who uses its resources then it can

delegate these functions to Expedient.

Expedientôs architecture is based on a central control block from where the different plug-ins are

connected to the correspondent Aggregate Manager (AM) (see Figure 2). Each Aggregate Manager

will be responsible for the management of the resources that are underneath it and that will be

presented to the user through the Expedient user interface in a homogeneous way.

Core element in the expedient architecture is the aggregation manager. Typically, all physical

resources are controlled by some kind of management framework and interface (e.g. virtual

machine monitors control the operation of virtual servers and the surrounding physical

environment). The AM uses the resourceôs native management interface for configuration and

monitoring and exposes this interface via an abstract interface towards the expedient control

framework.

As mentioned before, Expedient is a Django based web application (Django is a Python based web

development framework) and follows a modular approach, i.e. its functionality can be extended by

writing and deriving new ñplug-insò from a set of base classes. Each aggregate manager is

connected to a resource specific plugin within expedient, so the AM binds actually the resourceôs

management interface to expedient via the plugin.

Deliverable 5.1 OpenFlow in Europe ï Linking Infrastructure and Applications - OFELIA

© OFELIA consortium 2010-2013 Page 15 of (63)

Figure 2: Expedient tool architecture.

There exists a one-to-one relationship between an aggregation manager and a corresponding plug-in

within Expedient. Users with administrative rights may register new plug-in/AM pairs for

controlling different resources via the Expedient web interface, thus Expedient is a modular

framework with significant extensibility.

Expedient uses MySQL as persistent storage for user authentication and management. On one side,

users authenticate themselves against Expedient and on the other side, Expedient authenticates itself

against the AM database. Expedient runs on top of an Apache2 server.

The different blocks that take part in the communication between the user and the resources to be

managed are communicated through XML-RPC protocol. XML-RPC protocol is a remote

procedure calling that uses HTTP as the transport and XML as the encoding.

OFELIA ï OpenFlow in Europe ï Linking Infrastructure and Applications Deliverable 5.1

Page 16 of (63) © OFELIA consortium 2010-2013

2.1.1 Code analysis

Expedient's code base consists of three main packages: clearinghouse, common and UI. The

following figure shows a diagram of the package structure:

Figure 3: Expedient code structure.

In the /expedient/clearinghouse package we can find the modules that contain the main

models that correspond to the information data to be stored in the database and managed by the tool.

The main modules that can be found are the following:

¶ aggregate: manages all the actions that can be done over an aggregate
1
. For example,

listing, deleting or adding aggregates to Expedient tool or to any project or slice. When

adding new plug-ins to Expedient tool, the new aggregate model should inherit from the

Aggregate model inside this package.

¶ permissionmgmt: handles all the permission requests and approvals or denials concerning

users, projects and slices.

1
 Aggregate: Abstraction concept that represents a generic set of resources

